

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

1

DATA CONVEYER™

INTRODUCTION

Imagine that a weather forecast announces a temperature drop below 20 degrees. Does this

indicate the arrival of an arctic air mass? In America, most likely yes. In Europe however,

where temperature is measured in Celsius, this weather forecast would simply convey a

relief from a heat wave.

Data is everywhere, but it is not useful unless we know how to interpret the data provided

to us. In the ever-evolving technology universe, we’ve become accustomed to conveniences

that help us in interpreting data. For example, a SAVE AS feature:

 There is a Word document. Let’s SAVE it AS a PDF file.

 There is a jpeg image. Let’s SAVE it AS a bitmap.

In a corporate world, things tend to get complicated. The SAVE AS feature cannot be easily

applied. There are just too many proprietary standards and “one-of-a-kind” conventions.

Wouldn't it be nice though, to take the SAVE AS feature for granted?

 There is an X12 file with EDI 837 transactions representing medical claims. Let’s SAVE it

AS a keyword file, so that we can load claim transactions to our database.

 There is text data to be loaded to our system. Let’s SAVE it AS records in our database

table.

 There are periodic transactions received by our Enterprise Service Bus. Let’s collect them

and SAVE AS hourly Excel spreadsheets.

With Data Conveyer, these statements are not far from reality. No, Data Conveyer does not

come with a SAVE AS button to click, however it reduces the time and effort to implement

data migrations, often by orders of magnitude. Hence, a corporate data-centric project can

be expected to take days or weeks to complete, not months or years.

And... if you're creative enough, there is nothing preventing you from creating your own

SAVE AS button that employs Data Conveyer to address your particular scenario.

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

2

DATA CONVEYER™

OVERVIEW

Data Conveyer is a toolkit and a lightweight transformation engine to facilitate real-time

data migrations. It harnesses the power of modern, multi-core processors by making

extensive use of parallel processing and concurrency. The toolkit enables rapid

implementation of a variety of transformations and integration patterns.

Data Conveyer’s architecture conforms to the Extract-Transformation-Load (ETL) paradigm.

MAIN CHARACTERISTICS OF DATA CONVEYER

 A self-contained executable (DLL library) that does not require any dedicated infrastructure

for deployment. It can be deployed on any environment running .NET Framework 4.5 or

.NET Standard 2.0. This includes Windows, Linux, Mac OS and other systems.

 Non-blocking, asynchronous execution mode. Operation in progress is cancellable.

 Inherently parallelizable, scalable and production ready.

 Highly configurable, comprehensive, yet intuitive API that accelerates prototyping,

development and implementation of various data migration scenarios.

 Native support for a diverse set of data formats, including delimited values, fixed width

fields, key-value pairs (keywords), XML, JSON, and X12 (EDI).

 Expandable architecture to support additional data formats and transformation patterns,

either natively or using plug-in modules.

Intake Source

Transform

… Output Target

Transform

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

3

DATA CONVEYER™

ADVANTAGES FOR SOLUTION DEVELOPMENT TEAMS

Feature Description

Elimination of mundane,

yet time-consuming tasks

Little or no effort is required to configure Data Conveyer to load data, parse

input rows, combine related records, convert data formats, produce output

records and perform many other tasks common in data migration projects.

Separation of concerns

Tasks to be performed by solution developers are simplified because Data

Conveyer isolates their contexts. As an example, in order to implement data

mappings, a developer only needs to supply a single function that translates a

set of uniform input elements into output elements.

Ease of workload

distribution

Components of solutions based on Data Conveyer are loosely coupled.

Accordingly, tasks performed by team members working on a single solution do

not generally depend on each other. As an illustration, work on

receiving/extracting data from a custom data source can be conducted

independently from implementing data mappings.

Accelerated prototyping

Data Conveyer defines default values for all configuration settings. Furthermore,

components applicable to common scenarios are built-in and do not need to be

supplied. For example, if a data mapping function is not supplied, Data Conveyer

will simply pass unchanged contents of input records onto output.

Improved testability

Solutions based on Data Conveyer naturally fit into the test-driven development

(TDD) paradigm. Data Conveyer can be leveraged to quickly build tests that

supply arbitrary input records and expect corresponding records on output.

Agile and DevOps friendly

Data Conveyer facilitates software delivery in small increments. Working

Software can be constructed in a single Sprint cycle. Each subsequent cycle

builds upon the previous one by gradually introducing new functionality.

EFFORT REDUCTION

A typical data migration project of moderate

complexity involves a development effort of

roughly 300 hours when using traditional

techniques. The table on the right compares

such estimate to the approach based on Data

Conveyer. While the actual savings depend on

the project specifics, a 50% effort reduction

can be reasonably expected and the rate can

be as high as 90% in case of proofs of concept

or pilot projects.

 Approach
Task

Traditional
Based on

Data Conveyer

Requirements Analysis 20 20

Solution Design 20 10

Coding - Data Handling 100 0

Coding - Business Logic 100 90

Quality Assurance 50 20

Deployment Support 10 10

 Total Hours: 300 150

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

4

DATA CONVEYER™

DESIGN GOALS

UNIVERSAL FUNCTIONALITY The idea behind Data Conveyer stemmed from involvement in

numerous data-centric projects and realization that they generally follow the same pattern

differing only in some “variable elements”. These elements, once identified, became configurable

settings to be integrated during orchestration of a uniform data migration process. To support

such flexibility, Data Conveyer features a powerful API (Application Programming Interface) that

consists of over a 100 of configuration settings and dozens of user-definable functions.

EASE OF USE To ease complexities of its API, Data Conveyer employs a comprehensive logic to

assume default values and actions whenever configuration settings, functions or parameters are

not supplied. In fact, the entire Data Conveyer process can be orchestrated and executed in a

single-line statement. While more code is required in non-trivial cases, the settings and types

exposed by Data Conveyer are designed to be intuitive and naturally fall into place.

POWER Since introduction of functional programming features into .NET (such as LINQ, Task

Parallel Library, Dataflow, and many others), it became possible to succinctly write powerful code

implementing functionality that was previously only attainable via complex, multi-tier software.

This power comes at a price of a relatively steep learning curve. Data Conveyer aims at

leveraging all power of modern .NET features while interacting with its caller using a familiar

object-oriented paradigm.

EFFICIENCY Related to the previous item is the overall efficiency of Data Conveyer based

solutions. In contrast to traditional approaches, there is no need for dedicated infrastructure,

such as database or application servers. Instead, solutions run in memory relying heavily on

parallelism, concurrency and asynchronous processing. To minimize memory footprint, data is

subjected to rigorous buffering as it passes through Data Conveyer.

EXPANDABILITY In its early stages, Data Conveyer has undergone major refactoring episodes,

which in fact included a complete rewrite at one point. The main motivation behind these efforts

was desire to facilitate future product expansions. The current architecture of Data Conveyer

makes it straightforward to introduce support for new data formats, new types of transformation

as well as other features, for example logging.

EASE OF DEPLOYMENT Data Conveyer is a standalone executable. As such, it gets deployed by a

simple file copy, regardless if for development or production purposes. There are no

dependencies to load (aside from .NET), no Registry updates, no installers or uninstallers to run.

Data Conveyer can also be deployed as an industry standard NuGet package.

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

5

DATA CONVEYER™

FUNCTIONALITY AT A GLANCE

GENERAL

 Built-in support for various data formats

including delimited values, fixed width

fields, key-value pairs (keywords), XML,

JSON, and X12 data (HIPAA transactions).

 Support for strongly typed data elements.

 Data buffering throughout the process to

contain memory usage.

 Cancellable while in-progress.

 Progress reporting.

INTAKE

 Connectivity to any data source,

real-time or offline, in either

synchronous or asynchronous mode.

 Support for multiple sources.

 Variety of settings to fine tune data

parsing process.

 Ability to combine related records into

so-called clusters.

TRANSFORMATION

 Parallel processing (multiple engines).

 Support for various transformation modes,

including per record and per cluster.

 Flexible API allowing different ways to

access and manipulate data to suit

circumstances and individual preferences.

OUTPUT

 Connectivity to any target, real-time or

offline, in either synchronous or

asynchronous mode.

 Support for multiple targets including

custom routing rules.

 Variety of settings to fine tune data

formatting process.

PLANNED FOR FUTURE RELEASES

 Build-in support for additional data formats,

such as HL7 data.

 Pipelined (cascaded) transformations.

 Additional transformer types.

 Aggregator

 Sorter

QUALITY ASSURANCE

From the outset, Data Conveyer has been subjected to stringent quality assurance measures.

Every build of the product involves a series of over 400 test cases containing a total of more

than 6,000 assertions.

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

6

DATA CONVEYER™

WHEN IS IT USEFUL?

Data Conveyer can be invaluable in a variety of data migration solutions, where it can act as:

⬧ Data Importer/Exporter

⬧ Uploader/Downloader

⬧ Format Converter

⬧ Data Adapter

⬧ Data Cleanser/Scrubber

⬧ Data Analyzer

⬧ Data Auditor

⬧ Transaction Recorder

⬧ Pre-processor

⬧ Post-processor

⬧ Rules Engine

⬧ Transformation Engine

⬧ Transaction Router

⬧ Transaction Splitter

⬧ … and more …

Listed below are sample scenarios illustrating value added by Data Conveyer in terms of

manual effort reduction, acceleration of delivery timeframe, or less tangible benefits, such as

quality improvement and risk mitigation.

SCENARIO ONE: RAPID IMPLEMENTATION OF NEW BUSINESS

An insurance company signs a new deal with a 3rd party vendor. The deal necessitates data

exchange between the enterprises, such as import/export of membership data, claim data,

and the like.

Data Conveyer allows rapid implementation of a production-ready solution to translate data

between vendor specific and internal formats. Specifically, such implementation becomes a

matter of days or weeks, as opposed to months when using traditional techniques.

Furthermore, a proof of concept prototype of inbound or outbound data exchange can be

provided in a matter of hours, which may play an important role in project planning.

SCENARIO TWO: INTEGRATION INTO EXISTING INFRASTRUCTURE

In order to import external data, a database system relies on batch processing of keyword

data files. However, inbound transactions are received in real-time by a company-wide

enterprise service bus.

In this scenario, Data Conveyer can be employed as a listener to cumulate real-time

transactions received from the bus, translate data to the required format and post the

resulting files to the respective batch jobs.

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

7

DATA CONVEYER™

SCENARIO THREE: AUTOMATION OF BENEFITS CONFIGURATION

A team of product consultants works on configuring new products to be offered during the

next benefit year. The process is tedious and consist of repetitive cycles. Consultants define

configuration data using ad-hoc Excel files. The files get uploaded into the database in

order to conduct user acceptance tests. At the conclusion of the tests, the cycle needs to be

repeated, until the test results are satisfactory.

In this scenario, Data Conveyer can be leveraged to generate SQL statements from Excel

data, which offers two-fold improvement: reduction of manual effort and error elimination.

As an added benefit, the operation can generally be conducted directly from the

consultants’ desktops.

SCENARIO FOUR: USER FRIENDLY DATA RETRIEVAL

An application receives complex data from a remote source, such as a web service. Before

applying the application logic, the data needs to be parsed, scrubbed and/or evaluated. In

addition, the application’s graphical user interface needs to remain responsive during this

process.

In this scenario, Data Conveyer can do both: consume the service as well as extract required

elements from received data… all in a non-blocking, asynchronous mode.

SCENARIO FIVE: EASY SEPARATION OF EDI TRANSACTIONS

EDI translators often identify inbound transactions based solely on a transaction type. As an

example, EDI 834 transactions may represent daily enrollment updates as well as monthly

summary records. Consequently, it may be difficult to separate transactions intended for

distinct designations.

Data Conveyer can be used to evaluate transactions produced by the EDI translator, apply

custom routing rules and create separate outputs to forward transactions to distinct targets

for further processing.

20190529

Copyright © 2016-2019 Mavidian Technologies Limited Liability Company. All Rights Reserved.

8

DATA CONVEYER™

SCENARIO SIX: DATA ANALYSIS AUGMENTATION

During a system conversion, data profiling is performed to assess data quality and

compatibility with the target system. Very large quantities of data get loaded into a SQL

database for subsequent analyses. It is quickly discovered that majority of the records

contain no data of interest. In addition, several data fields are universally empty. It is not

difficult to bypass such irrelevant data using SQL queries; however, the sheer volume of data

heavily affects performance and makes the analysis process very time consuming.

Data Conveyer can easily eliminate loading unneeded data in the first place. Records

containing no relevant data can be filtered out and empty fields can be removed, both

before data gets loaded into the database.

SCENARIO SEVEN: ENHANCED EDI TRANSLATION

EDI transactions received from a newly signed trading partner cause occasional errors when

processed by the EDI Translator. Upon analysis, it was determined that some transactions,

while HIPAA compliant, are interpreted as duplicates instead of being recognized as distinct

transactions. Any reconfiguration of the EDI Translator is problematic, due to the effort

involved and also the high risk of impact on already established business.

Data Conveyer can be employed in this scenario as a preprocessor to evaluate and update

EDI transactions according to custom rules, so that they are disambiguated and interpreted

by the EDI Translator as intended.

